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Abstract

Postbuckling behaviour of elastic thin-walled orthotropic girders has been analysed within the second order of the
Koiter’s asymptotic stability theory of conservative systems (Koiter, 1963). Girders built of orthotropic plates with the
principal directions of orthotropy parallel to the wall edges characterised by a widthwise varying orthotropy coefficient
p; = E,;/E.; have been investigated. The girders with square and trapezoid sections, simply supported on the loaded
edges, have been analysed. The girders have been subjected to the loads that cause a uniform and linearly variable
shortening of the edges. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Elastic buckling of isotropic and orthotropic plates and girders has been discussed in many works (e.g.
Chandra and Raju, 1973; Kotakowski, 1993; Krélak, 1990; Krélak, 1995a and Kotakowski and Krélak,
1995b). Results of these investigations show a possibility of building thin-walled structures that are light,
safe and reliable.

As far as composite materials are concerned, their material properties can be freely modelled in selected
directions or regions. Thus, it is possible to manufacture plates or girders with variable strength properties.
Fibrous composites with properly distributed (concentrated or rarefied) fibres are examples of materials
characterised by such properties. Composite materials are most often modelled as orthotropic materials. In
the wide literature devoted to stability problems there is a lack of analysis of an influence of plate widthwise
varying orthotropy on values of critical loads of girders built of such plates, on their modes of buckling and
on postbuckling equilibrium paths of these girders.

In the present paper a problem of stability loss in an elastic range and behaviour in a postbuckling range
of beam-columns with square and trapezoid sections, built of homogeneous orthotropic plates with
widthwise varying orthotropy, is discussed.
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Nomenclature

a, a1, ajy, apy coefficients of the non-linear equilibrium equation

a, bi, ¢, d;, @, f;, 8, h; orthogonal functions for the first order approximation fields
a;, b, ¢, d;, e, f., g;, h; orthogonal functions for the second order approximation fields
bi111 = aii/a; postbuckling coefficient of the equilibrium equation

b; ith bandwidth

D;, Dy; plate stiffness of the ith band (D; = Eh;/[12(1 — y?)], Dy; = G} /6)
E; = E;, lengthwise Young’s modulus for the ith band of the girder wall
widthwise Young’s modulus for the ith band

compressive critical force corresponding to local or global buckling (N)
modulus of elasticity (Kirchhoff’s modulus) for the ith band

thickness of the ith band

number of the band, wall (subscript i =1,2,...)

girder length

number of halfwaves of the buckling mode in the longitudinal direction
critical moment corresponding to local or global buckling (Nm)

> My, M, sectional bending moment of the ith band

force field

force field of the zero state (prebuckling state)

force field of the first order approximation (critical state)

force field of the second order approximation (postbuckling state)

Nic, Ny, Ny, sectional membrane forces for the ith band

=
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me prebuckling lengthwise force for the ith band

N,&l), Ni(yl), ngy) critical sectional membrane forces for the ith band, for the first order ap-
proximation

Nif), N,-(yz), N,fv) postbuckling sectional membrane forces for the ith band, for the second
order approximation

U ) displacement field

U, displacement field of the zero state (prebuckling state)

Ui(l) displacement field of the first order approximation (critical state)

Ui(z) displacement field of the second order approximation (postbuckling state)

u;, v;, w; middle surface displacement components for the ith band

,(0), vfo), wf()) prebuckling displacement field for the ith band (zero state)

WM Wi critical displacement field for the ith band (for the first order)

@0 Wi postbuckling displacement field for the ith band (for the second order)

X:, Vi, z; local Cartesian system of co-ordinates for the ith band

B; = 1/n; inverse of the assumed coefficient of orthotropy, assumed in order to facilitate the
analysis of data

0 scalar parameter of the generalised shortening

Okr critical value of ¢ (value of the displacement corresponding to critical load)

&, &y relative strain along x;, y;

Vixy non-dilatational strain angle (7, = 2¢;,)

<

u
u
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Y coefficient of postbuckling lengthwise stiffness reduction

K parameter of the external load distribution (ratio of the displacement of the upper
part of the girder with respect to the bottom part)

N, = % coefficient of orthotropy of the ith plate (band)

A " scalar load parameter

Acr critical value of A (critical value of buckling)

V; = Vi, Poisson’s ratio for the ith band in the x direction (the first subscript denotes a

transverse direction, whereas the second one — a load direction)

Vipx Poisson’s ratio for the ith band in the p direction (the first subscript denotes a
transverse direction, whereas the second one — a load direction)

10) angle enclosed between the wall “/”” and “i + 1”7

£ amplitude of the linear eigenvector of buckling (normalised with the equality condi-

tion between the maximum deflection and the thickness of the first plate 4;)

2. Problem under consideration

Girders with closed sections (Fig. 1), built of plates with widthwise varying orthotropy (Fig. 2), have
been considered. The assumed model of such a plate is built of narrow longitudinal orthotropic bands

Fig. 1. Cross-sections of the girders under analysis.
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Fig. 2. Dimensions of the ith plate and the assumed local coordinate system.
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Fig. 3. Band model of a plate with variable orthotropy.

(plates), and each plate can have a different coefficient of orthotropy. The computational model describes
precisely actual structural materials (Fig. 3).

A plate model has been assumed for a thin-walled beam-column. To describe the middle surface strains
for each plate band, a complete strain tensor for thin plates have been assumed in the form:

Eix = Uix + %(wzzx + ulzx + Ul%x)’
&y = Uiy + %(sz} + uiy + viy), (1)

28ixy - ”/,-xy = Uiy + Vix + WixWiy + UixUiy + vi,xvi,}w

where u;, v;, w;-displacements parallel to the respective axes x;, y;, z; of the local Cartesian system of co-
ordinates, whose plane x;y; coincides with the middle surface of the ith plate (ith band) before its buckling
(Figs. 2 and 4).

In the majority of publications devoted to structure stability problems, the terms (ulzx + vix), (u,zv + viy)
and (u; u;, + v:0;,) are in general neglected for ¢, &, &y, correspondingly, in Eq. (1) in the strain tensor
components.

Well-known relations in the theory of orthotropic plates (e.g. Chandra and Raju, 1973; Krélak, 1995)
describe the sectional forces and moments reduced to the middle surface of the ith plate (ith band):
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Fig. 4. Local coordinate systems of interactive plates (bands).

El'hl’

]Vix == 1— 7’],—\)12 (eix + nivigiy)a
Eh;
Ny = 1_7711‘)12 (nview + niep),
]vixy = ]viyx = Glhiyix)f - 2Gihi8i)€ya (2)

Mx = 7Di(wi,xx + niviwi,yy)v
My = _niDi(ViWi,xx + Wl"}’)’)a
M,

= _Dliwi,xy7

where
E; .
E. =E;, Vi = Vigys m=g - coefficient of orthotropy (3)

According to the Betty—Maxwell’s theorem, the Young’s moduli and the Poisson’s ratios occurring in
Eq. (2) have to satisfy the following relation:

Eixviyx = Eiyvixy; (4)
and taking into account notations (3):
Evie = Epv;. (4a)

Variational equations of equilibrium (5), kinematic and static conditions of continuity at the joints of
contacting bands (8), and boundary conditions (6) on the ends under load (x = 0, x = /) follow from the
principle of virtual works for a single plate band.

For an orthotropic plate in which the principal directions of orthotropy are parallel to the plate edges,
the variational equations of equilibrium corresponding to Eq. (1) take the form:
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/ ( - Nx,x - ny,y) 67/! dS = 07

/ ( = Nyy — ny‘x)BUdS =0, .

/ [ (Nm + NXN)W,X - (Nyﬂy + N«ryw)wy = Now e = Nyw,,
— 2NyWy — My e — M, 5, — 2M,,,,,|OWdS = 0

Apart from the equations of equilibrium, the following boundary conditions for x = constant:

[ . = hptoudy =0

/ N, dvdy =0

[ 8y = [ Dl e, )w.dy =0 (6)
/ (Nowx + Ngw,, + My +2M,, ) dwdy

= / [NXWJ + Nyw,, — Dw o — (vD + 2D1)wﬂx}y] dwdy =0

and for y = constant:

/nyéiudx: 0
/Ny ovdx =0
/M) dw,dx = —/nD(vaxx +ww)8w,ydx =0 (7)

/ (‘N,VWJ’ +Nywy + M, + 2ny~y) dwdx

— / [Nywvy + Nyw. — nDw,,,, — (vyD + 2D1)wmy] owdx =0

have been obtained.
The static and kinematic junction conditions on the longitudinal edges of adjacent plates, which result
from Eq. (7), can be written as:

ui+l|_ = Ui‘+;

Wirt|” = wi|" cos (@) — v;| " sin (o),

vt = wi| " sin (o) + vi| " cos(¢),
- +

WHLy’ = Wiy| »

M(H»l)yr = My +7 (8)
- + R

N(i+1)y| - ]vzy| Cos (@) - ij Sll’l((p) =0,

X - + T % +
Q(i+1)y + MJ’} sm(qo) - Qiy COS(QD) = 05

N(i+l)x,vr = Nixy|+’
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where
A/Iiy = _n[Di(Wi,yy + Viwi,xx)a
Q,*y = —0DiWiyy — (vit;D;i + 2D1))Wi vy + NyWiy + N Wiy, 9)
P = Piit1-
A non-linear stability problem has been solved by means of the Koiter’s asymptotic theory (Chandra and
Raju, 1973). The displacement field U;, and sectional force field N; have been expanded into the power

series with respect to the parameter £, — the buckling linear eigenvector amplitude (normalised with the
equality condition between the maximum deflection and the thickness of the first plate /;).

U,‘ = )\,Uf
Ni - )L,NEO

V1@ 48T 4

_ _ (10)
"+ N 1

By substituting expansions (10) into equations of equilibrium (5), junction conditions (8) and boundary
conditions (6), the boundary problem of the zero, first and second order has been obtained (Krélak, 1990,
1995). The zero approximation describes the prebuckling state, whereas the first order approximation al-
lows for determination of critical loads and the buckling modes corresponding to them, taking into account
minimisation with respect to the number of halfwaves m in the lengthwise direction. The second order
approximation is reduced to a linear system of differential heterogeneous equations, whose right-hand sides
depend on the force field and the first order displacements only.

Taking into account the zero, first and second order approximation, the displacements of the ith plate
(band) have been assumed according to Eq. (10) as:

u; = iu?o) + fulm + ézul@,

v =" + eV + v, (11)
wi = ew) + Ew.

In the present paper, an incomplete strain tensor has been taken according to the von Karman and
Marquerre’s non-linear theory of plates for a non-linear analysis of stability within the second order ap-
proximation:

Eix = ui,x + %Wiﬁ

&y = Uiy + %Wiy’ (12)

28ixy = yixy = Uiy + Uix + WixWiy-

Such an assumption has been taken after an extensive numerical analysis within the first order ap-
proximation where a complete strain tensor according to Eq. (1) and an incomplete strain tensor (12) were
assumed. The most considerable differences were obtained in the values of global critical loads analysed for
the second order and they did not exceed 2-3%.

The walls of the analysed girders under widthwise linearly variable load were divided into bands for
which a constant value of the displacement causing a uniform shortening of edges was assumed (Fig. 5). In
order to apply such a kind of load, the transition matrix method was used.

When a homogeneous zero state (prebuckling) of the ith plate (band) is assumed in the form:

ul(()) = (1/2 —xi)Ai, (13)
UEO) = vy i,

which, according to first expression in Eq. (2), means:
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Fig. 5. Discretisation of the displacement linear distribution.

]\/I&O) - 7E[hl'A[ (14)

where N,-ﬁco) is the current load, then the load is determined by a unit load system and by a scalar load
coefficient.

Numerical aspects of convergence of the problem under consideration have decided about an intro-
duction of the following orthogonal functions for the first order fields as boundary conditions (7) on the
longitudinal edges, (for more detailed analysis see (Kotakewski, Krélak, Kowal-Michalska, 1999)):

a = UE,IX) + v,-ugg), b; = ”z(l/) + Uz(',ll)’
E,-Zul('l)a Ei:l’gl)’
2 = wih, 7 = Wz(l,) (15)
Bl bl = By (w) tll) e,
where
x; i
(= b_i’ Li = ZLI

T3]
1

In the above expressions and in the further part of this paper, the subscript
derivatives with respect to , y.

Taking into account the relations describing the relative strains and sectional forces, as well as the or-
thogonal functions (15) for the first order approximation, the following system of homogeneous differential
equations has been obtained:

has been neglected in the

— o 1 7
ajy = — ET;bLCa
2

- e
by, = —E} (Cz,CC + nivldhé/)’
Ei,/ =b; — dz,i
diy =a; — vicig, (16)
e, =1
fi,y =& —Vieiy
. . 1 "
8, =z (hi—4fiz)

b
- 12627, = _ -
hiy = ——1 14 (1 - Wivi)ei-,ic —Eqeicie — viELS i,

]
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The solution to the system of equations (16) is assumed to be as follows:

— . b; - b; I b; - = . b;
a; = A;(y;) sin ggn b; = Bi(y;) cos gCia ¢ = Ci(y;) cos g&, d; = D;(y;)sin gCia
— . b; - = . b; I— . b; - = . b;
e =E;(y) Smgé;‘a fi=Fixw) Slngéi, g = Gi(z;)sin mTlE Gy hi=H(p) Smgg

(17)

where 4;, B;, C;, D;, E;, F:, G;, H; are unknown functions along the transverse direction, which will be
determined during numerical computations within the first order approximation by means of the transition

matrix method.
Substituting the predicted solution (17) into Eq. (18), one gets the following system of ordinary differ-

ential equations:

y (’”“b">§,., B E,
1 E;kz l 1

mmnb; mub; \ 1
z,.+v,.< l')f,., E-F, F;E,-+v,-( ) E. G-t
—«  (mmb;\*| 12D%E;, 5 ([ mub;\* | = (mub;\ .
=~ o 2A(1 = npv}) — E; ; E; + viE}, F,. (18)

In the above relations a dot (superscript) denotes a derivative with respect to y;.
For the second order approximation, analogously as for the first order approximation, the following
orthogonal functions for fields of forces and displacements have been introduced:

D

.
i

&i = Uz(z/) + vi”gi)v I;i = ufz) + U;?; éi = u§2)7 CAII = 01(2)7 éi =W, f; = Wi,x7
5 L 2

g = W’%)z + ViW<2) h; = E; (W(z) + ViWS,ZC)Cz) + 4Wz,{§z'

(0 Lyx

(19)

Putting the functions (15) for the first and functions (19) for the second order approximation into the
equilibrium equations, we arrive at the following linear system of differential equations for the second order

approximation:

a; =d;, +vicit,
by =i, + dig,
f:‘ = éi',z»
& =Jiy TVius,
hi = E?zgiz + 4fzzg¢a (20)
Eha;, + b, =0,
£ (@ca + ﬂiViLZ,cl) by + 5 (@@ + vl of i) =0,
% (E?l Gt + iy + ViE?zﬁ,m) + bi[bijei; — bicfi — bif
+ El*lb,)A(l — ﬂiv%)éi,gg — El*l (1 — ﬂfvlg)a-?gé,—,gg — E;ﬁz\)iaié,—(g] =0

A solution of the system of equations (20) for the second order approximation has been assumed in the
following form:
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nnb; A .
¢

R - . . nmb;
a; = ZA,‘,, (Xl) Sin i + Ai y b[ = ZB,‘H (Xl) COS TCI-,

4 A nmb; ! 5 ~ . nmb;

Ci = ;Cin(;(i) COS TC[ +C; (5 - Cibi>7 di = ;Din(}(i) sm Tén (21)
. - . nmb; N . . nmb;

e = ZEin(Xi) sm Téia /I; = ZEV[(X}) s Tgh

5 A . nmb; ~ 5 . nmb;
8 = ZGM(XI‘) sin Ji zh hi = ZI_IHT(XI) sm TC:”

where A, Biny Cins Dins Einy Ep, Giny Hip — unknown functions which will be determined during numerical
computations within the second order approximation with the transition matrix method; 4;, C; — constants
determined form the boundary conditions for the second order approximation.

Simplicity in satisfying the orthogonality condition is one of the main reasons why the second order
approximation solution in the form of series has been chosen. It follows from the orthogonality conditions
of the first and second order fields that an amplitude of just one harmonics should be possibly changed for
the second order.

After the substitution of the predicted solution (21) into solution (20), the following system of ordinary
differential equations has been obtained:

. 1 (nnb\ s 1| mub; \ = —
A. - ! Bin - —E>k FIF i ! EiFi
" E;a(l> 2" '”(l)

{bu}

——E
2b il

2
(nT;bl) éin — NVi ( nT;bl )bt.n

1 . mTl',b,- =2 mTl',b,- — —e
- F EF | {a),
2b 11|: / > i + < i > 1:| {a }
TC

CrF (") By - () B
g 1 l o n El*zb l ) njos

3
(") B (" )R

hZ

~

. b\ . bi\*.  12E;D b\’ .
i = ve, (" )E;—Ejl<”” >Em+ il ’),A(l—nivf)<nn )E

if the following is taken into account:
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2mnbé nnbé . nmb& 2mnbf . nnbf
in 7 :Za,,cos T I:ansm T cos Zd

where

2 1 1 4 1 1
{61'1}_5(2171+n+2mn)7 {b”}_E’ {d} = _(n+2m+n2m)’

where n =1, 3, 5, 7,..., and also according to Eq. (19) F; = G; + vE; (@)2
Having found the solutions to the first and second order of the boundary problem, the coefficients ay, a;,
ayi, ajpn have been determined (Kroélak, 1990; 1995).

2\? 0
~0.5 N gs,
(2)x s

ay = —/’LZ/N(O)

ao

apg = 22/ + 2jlev x 1v) + ngl)(wflv))z} dSia (23)
ain = ZZ/ ix wc zx +]vz\fy ( )Wfi) + Wz(l) ) +N 1y (2)] dSl
+Z/ N2 )+ 2N Wi w) + N () )]dSl».

The postbuckling equilibrium path is rendered by the equation:

AN, LA
a1<1)—)c+a11152+a111153alﬁ i (24)
where A, 1s the value of critical load.

After the determination of the coefficient A, the coefficient of lengthwise stiffness reduction y has been
determined on the basis of the following equations (Krélak, 1995):

d(1fie) e -
T d(4/4a) (1 +610(61111 + 26111115)) . )

In a special case, i.e. for the so-called ideal structure without initial imperfections (¢* = 0) and when the
equilibrium path (ay;;) is symmetrical, the postbuckling equilibrium path is defined by the equation:

A
= 1+ by & (26)

and the coefficient of lengthwise stiffness reduction is:

a? !
=1 1 27
/ ( i 2apay111 ) ( )

where b1111 = 611111/611.
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The detailed numerical analysis has shown that the values of the coefficient a;;; for the cases under
consideration can be disregarded in practice.

3. Results of calculations

Girders with closed square and trapezoid sections, characterised by the following dimensions, have been
analysed (Fig. 1):

e square section: ¢ = 100 mm; # = 1 mm (wall thickness); L = 2750 mm
e trapezoid section: @ = 100 mm; b = 50 mm; ¢ = 95.476 mm; L = 2750 mm; thickness of the respective
walls: hg = 1.7 mm; h, = 0.5 mm; 4, = 1.075 mm

In order to characterise the way the load is applied, the coefficient of edge shortening x = u; /u, has been
introduced, where u;, u, are values of displacements of the upper and bottom girder plates for x = 0, / (Fig.
1). All the beam-columns under analysis were built of plates having a geometrical and material axis of
symmetry.

In order to facilitate the results of numerical analysis, the second coefficient of orthotropy =1/ =
E./E, has been introduced. With the coefficient of orthotropy defined in such a way, its increase means an
increase in the lengthwise stiffness E, of girder walls.

Sample results of numerical investigations are presented in the form of diagrams describing critical
quantities (the force F,,, the moment M. or both the force and moment) as functions of a parameter
describing orthotropy variability. The amplitude A of the sinusoid depicting a change of orthotropy (Fig. 5)
is such a parameter. As a result of the analysis within the second order approximation, we have obtained
b1 = ain/a; (coefficient describing the character of the postbuckling equilibrium path) and y (lengthwise
stiffness reduction coefficient), which are shown on diagrams as functions of the variable A4.

Indispensable relations between the coefficient of orthotropy and E;, E,;, G;, vy, for the sinusoidally
varying coefficient of orthotropy f; have been obtained by an approximation (Fig. 6) of the material data
(Chandra and Raju, 1973) and they assume the following form:

Ei=BEy,  Ey=34807 U2 _1621 G — 14605 - B2 M6y, =03 fori=1,..,m,

14126 34487

12887 31536

11649 // 285851 /
256341
9172 //. 226831 /‘

7934 19732: *
] B
% B 16781+ —— — e e A

6695
08 20 3.3 45 5.7 7.0 8.2 08 20 3.3 4.5 5.7 7.0 8.2

10411

Fig. 6. Curves describing the relation of G and E, as a function of the coefficient of orthotropy f (@): points obtained on the basis of
the material data taken from the literature [2], (—): curved obtained as a result of approximation.
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The coefficients of orthotropy for individual bands of the model are assumed according to the formula:

2my;

1

where f§; = 3.2292, 4 € (—2,2): sinusoid amplitude, y;: coordinate defining the distance of the band from
one of the longitudinal edges, b,: plate width.

3.1. Results obtained from first order approximation

Fig. 7 presents critical quantities for the girder with a square section subjected to the load that causes a
linearly variable shortening of edges (x = —1), corresponding to pure bending. As can be seen in Fig. 7, all
the curves are of an increasing character. An increase in the amplitude 4 from —2 to 2 causes approxi-
mately a triple increase in the critical moment for the global symmetric mode of buckling, a 50% increase
for the antisymmetric mode of global buckling and twice as large an increase in critical load for local
stability loss. As it is clear that the critical values corresponding to local stability loss are many times lower
than the critical values for global modes, only postcritical quantities corresponding to local buckling have
been analysed.

For local stability loss, a change in the amplitude A4 causes an insignificant change of the buckling mode,
i.e. an increase in the number of halfwaves occurring during stability loss (Table — Fig. 7).

Figs. 8 and 9 present the values of critical loads for girder with a trapezoidal section, built of walls
characterised by a widthwise sinusoidally variable coefficient of orthotropy. The crosswise dimensions of
the trapezoid girder have been selected in such a manner that the moments of inertia with respect to the
section principal axes of inertia are the same. The girder has been loaded in a way causing a uniform
shortening of edges k = 1. As the neutral axis of the section does not coincide with the material axis of
symmetry, the force and moment are critical quantities under such circumstances (eccentric compression
corresponds to a uniform edge shortening).

Global (Eulerian m = 1) and local (m # 1) flexular buckling have been analysed. The values of global
symmetric and antisymmetric critical load (marked as “Global Sym” and “Global Asym™, respectively —
see Fig. 8) are equal in the beam model. In the case of the plate model, as can be seen in Fig. 8, a certain role
is played by material asymmetry of the section, i. e. displacement of the material symmetry axis of side walls

A m M|[Nm] M[Nm]
-2 22 180
= 23 242 35000
Global
0 25 306 30000 +— antysymmetric o
I 26| 386 — Global P
2 27 493 25000 1 symmetric
- | ocal -
20000 + ////
15000 Eaad
//
10000 o - —
5000
0 e —

2 145 -1 05 0 05 1 15 2 A

Fig. 7. Influence of the amplitude 4 on a value of the critical moment for the girder with a square section and the coefficient of edge
shortening k = —1.
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first local mode second local mode
A -2 -1 0 1 2 A -2 -1 0 1 2
m 22 23 24 26 27 m 51 55 59 63 68

F[kN] |63 [7.4 [85 [98 [11.5 [FkN] [6.6 |82 [9.6 [11.3 [14.1
M[Nm] |43 [51 [58 [67 [78 |[M[Nm] [45 |56 [e6 [78 |96

70 - F[kN] 450 M[Nm]
400 =]
60 I ,//
_,,w/"" 350
50 e =
L= — — ~Global 300 — — —Global [
40 Sym || 250 Sym | |
Global | Global
30 Asym || 200 : Asym ||
= = Local 1 — - 1
150 Local | |
20 — - - —Local 2|4 = - - = Local 2
. 100 =
o e iy
LR == 50 b - i -
0 A 0 A
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Fig. 8. Influence of the amplitude 4 on a value of the critical force for the girder with a trapezoid section and the coefficient of edge
shortening x = 1.

a) b)

Fig. 9. Buckling modes: (a) local and (b) global.

with respect to the horizontal central axis of inertia of the section. Both the global modes are flexular in two
planes perpendicular with respect to each other (Fig. 9b). Such an analysis is not possible when the beam
model of the orthotropic column is assumed.

The values of local loads for two significantly different numbers of halfwaves of buckling m are close, but
various modes of buckling correspond to them (Fig. 9a). For the first local mode, the web loses stability at
first, whereas for the second mode — it is the upper plate to lose stability first.

As can be seen in Fig. 8, all critical quantities increase with an increase in the amplitude A4, i.e. for the
girder under analysis an increase in the wall edge stiffness causes an increase in critical load that results in
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stability loss. If the values are analysed, it can be seen that an increase in the critical force and moment
equals to approximately 30% for global modes and it is nearly twice as large for local modes at a change in
the amplitude A4 from -2 to 2.

With an increase in the amplitude 4, a mode of buckling changes as well, and the number of buckling
halfwaves m increases (Fig. 8 — Table).

3.2. Results obtained from second order approximation

Fig. 10 presents postbuckling behaviour of girder with a square section subjected to the load that causes
a linearly variable shortening of edges (x = —1), corresponding to pure bending. It shows an influence of
the amplitude 4 on a value of the coefficient of stiffness reduction y and the coefficient by;;; which is a
coefficient in the equation of the parabola describing the postbuckling equilibrium path (26). With an
increase in the amplitude 4, the coefficient of stiffness reduction y increases by approximately 60%, whereas
the coefficient by, increases for 4 from —2 to 0 and decreases for 4 from 0 to 2.

Figs. 11 and 12 present postbuckling behaviour of girder with a trapezoidal section, which has been
loaded in a way causing an uniform shortening of edges x = 1.

Fig. 11 presents the lengthwise stiffness reduction coefficient y and the coefficient b;;;; of the equation
describing the postbuckling equilibrium path as a function of the amplitude 4 of the sinusoid describing a

0,8
07 !
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0,5 b]l]l
e e B 1 O
0.4 o S -~
0,3
0,2
0,1
0 A
-2 -1 0 1 2
Fig. 10. Influence of the amplitude 4 on values of the coefficients y and by, for the girder with a square section and the coefficient of
edge shortening k = —1.
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Fig. 11. Influence of the amplitude 4 on the values of the coefficients y and by, for the girder with a trapezoid section and the co-
efficient of edge shortening x = 1: (a) first local mode, (b) second local mode.



4854 T. Kubiak | International Journal of Solids and Structures 38 (2001) 48394855

6 Mha
— — —Local 1 A=-

\ £ '
Local 1 A=2

= ==| ocal 2 A=-

Local 2 A=2, /

[<~]

-4 -2 0 2 4

Fig. 12. Postbuckling equilibrium paths for the girder with a trapezoid section and the load coefficient k = 1.

change in the orthotropy coefficient along the width of the girder wall. As can be seen in the diagram,
reinforcement of plate edges stiffness results in an increase in the coefficient y. On the other hand, the
coefficient byjj; increases only in the range of A from —2 to 0 and it decreases in the range from 0 to 2.

In Fig. 12 postbuckling equilibrium paths corresponding to the first and second local buckling mode for
the girder with a trapezoidal section and the coefficient of edge shortening x = 1 for extreme values of the
amplitude 4 = —2 and 2 under analysis are shown. The postbuckling equilibrium paths for the first local
mode are more flat than the ones referring to the second mode. More disadvantageous postbuckling be-
haviour of the structure corresponds to the buckling of the first local mode.

4. Conclusions

A non-linear analysis of buckling for thin-walled structures with widthwise varying orthotropy has been
carried out.

The numerical computation results discussed in the present paper show that for the structures under
investigation a higher coefficient of orthotropy on the plate edges results in an increase in critical stresses in
beam columns subject to loads causing a uniform (x = 1) and linearly variable (x = —1) shortening of
edges. An analysis of the quantities characterising postbuckling behaviour of the structure has shown that
the stiffness reduction coefficient y grows with an increase in the amplitude A4, that is to say, with an increase
in the stiffness of girder wall edges.

Thus, we can draw a conclusion that if a kind of load, boundary conditions and structure geometry are
given, we can choose such a function describing the orthotropy variability along the wall width that the
critical load of the structure reaches a required values and the postbuckling behaviour.
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Appendix A. The following notation has been used:

_N U
Cl - bl, Xl bl7
E | E 9
Er=_t_ - R L —p.EY.
il Gi 1= '7["[27 i2 Gi 1= ’1,‘)12 il
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